The skeleton of tropical intraseasonal oscillations.
نویسندگان
چکیده
The Madden-Julian oscillation (MJO) is the dominant mode of variability in the tropical atmosphere on intraseasonal timescales and planetary spatial scales. Despite the primary importance of the MJO and the decades of research progress since its original discovery, a generally accepted theory for its essential mechanisms has remained elusive. Here, we present a minimal dynamical model for the MJO that recovers robustly its fundamental features (i.e., its "skeleton") on intraseasonal/planetary scales: (i) the peculiar dispersion relation of d omega/dk approximately = 0, (ii) the slow phase speed of approximately = 5 m/s, and (iii) the horizontal quadrupole vortex structure. This is accomplished here in a model that is neutrally stable on planetary scales; i.e., it is tacitly assumed that the primary instabilities occur on synoptic scales. The key premise of the model is that modulations of synoptic scale wave activity are induced by low-level moisture preconditioning on planetary scales, and they drive the "skeleton" of the MJO through modulated heating. The "muscle" of the MJO--including tilts, vertical structure, etc.--is contributed by other potential upscale transport effects from the synoptic scales.
منابع مشابه
Cloud and radiation budget changes associated with tropical intraseasonal oscillations
[1] We explore the daily evolution of tropical intraseasonal oscillations in satellite-observed tropospheric temperature, precipitation, radiative fluxes, and cloud properties. The warm/rainy phase of a composited average of fifteen oscillations is accompanied by a net reduction in radiative input into the ocean-atmosphere system, with longwave heating anomalies transitioning to longwave coolin...
متن کاملBoreal summer intraseasonal oscillations in the MJO skeleton model with observation-based forcing
The Madden-Julian oscillation (MJO) skeleton model is a low-order model for intraseasonal oscillations that, in an extended form, includes off-equatorial and antisymmetric components. Previous studies of this extended model have used an idealized background state and forcing terms. In the current study, observation-based estimates of these forcing terms and background state are used. Linear sol...
متن کاملUnited Mechanisms for the Generation of Low- and High-Frequency Tropical Waves. Part I: Control Experiments with Moist Convective Adjustment
To examine several mechanisms for the generation of lowand high-frequency tropical waves, numerical experiments are conducted using an idealized nine-level R21 spectral model with the original scheme of moist convective adjustment (MCA). The model prescribes globally uniform, time-independent distributions of sea surface temperatures and insolation, thereby excluding stationary waves and extrat...
متن کاملA Multi-Scale Model for the Intraseasonal Impact of the Diurnal Cycle of Tropical Convection
One of the crucial features of tropical convection is the observed variability on multiple spatiotemporal scales, ranging from cumulus clouds on the daily time scale over a few kilometers to intraseasonal oscillations over planetary scales. The diurnal cycle of tropical convection is a significant process but its large-scale impact is not well understood. Here we develop a multi-scale analytic ...
متن کاملA role for ocean biota in tropical intraseasonal atmospheric variability
[1] We propose that temporal variations within the marine plankton system can induce intraseasonal variations in sea surface temperature (SST) through the effect on solar penetration due to chlorophyll and other optically active organic components. Sensitivity studies with a simple model suggest that these small oscillations in SST may stimulate radiative-convective oscillations in the atmosphe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 21 شماره
صفحات -
تاریخ انتشار 2009